Commit eca856e9 by Lukas Riedel

Update doxygen docs

Fix formulae formatting. Add brief descriptions for models.

[skip ci]
parent 38de83d1
 ... ... @@ -11,6 +11,7 @@ @{ @ingroup Models @todo document richards model @brief Solves the transient Richards equation @} @defgroup RichardsParam Parameterization ... ...
 ... ... @@ -22,17 +22,19 @@ namespace Operator { * @brief Spatial local operator for the transport equation in unsaturated * media in a finite volume scheme. * @details It solves the spatial part of the transport equation: * * @f{eqnarray*}{ * \partial_t[\theta C_w] + * \nabla\cdot [\textbf{j}_w C_w] - * \nabla [\theta \mathsf{D}_{eff}\nabla C_w]=0 &\qquad \text{in } * \nabla [\theta \mathsf{D}_{\text{eff}}\nabla C_w]&=0 &\qquad \text{in } * \Omega\\ * C_w = g &\qquad \text{on } \Gamma_D * C_w &= g &\qquad \text{on } \Gamma_D * \subseteq\partial\Omega\\ * \nabla C_w \cdot \textbf{n} = \textbf{j}_{\scriptscriptstyle * \nabla C_w \cdot \textbf{n} &= \textbf{j}_{\scriptscriptstyle * C_w}& \qquad \text{on } \Gamma_N =\partial\Omega \backslash * \Gamma_D}{ * \Gamma_D * @f} * * @author Santiago Ospina De Los Ríos * @date 2018 * @ingroup LocalOperators ... ... @@ -435,17 +437,19 @@ private: * @brief Temporal local operator for the transport equation in unsaturated * media in a finite volume scheme. * @details It solves the temporal part of the transport equation: * * @f{eqnarray*}{ * \partial_t[\theta C_w] + * \nabla\cdot [\textbf{j}_w C_w] - * \nabla [\theta \mathsf{D}_{eff}\nabla C_w]=0 &\qquad \text{in } * \nabla [\theta \mathsf{D}_{\text{eff}}\nabla C_w]&=0 &\qquad \text{in } * \Omega\\ * C_w = g &\qquad \text{on } \Gamma_D * C_w &= g &\qquad \text{on } \Gamma_D * \subseteq\partial\Omega\\ * \nabla C_w \cdot \textbf{n} = \textbf{j}_{\scriptscriptstyle * \nabla C_w \cdot \textbf{n} &= \textbf{j}_{\scriptscriptstyle * C_w}& \qquad \text{on } \Gamma_N =\partial\Omega \backslash * \Gamma_D}{ * \Gamma_D * @f} * * @author Santiago Ospina De Los Ríos * @date 2018 * @ingroup LocalOperators ... ...
 ... ... @@ -8,27 +8,31 @@ @defgroup TransportModel Transport @{ @ingroup Models @brief Solves the transient passive transport equation for unsaturated media @ingroup Models @details The transport model implements a class that fulfill the Dune::Dorie::SimulationBase class requirements (see @ref Models), and which specifically solves the transport equation for unsaturated media: @f{eqnarray*}{ \partial_t[\theta C_w] + \nabla\cdot [\textbf{j}_w C_w] - \nabla [\theta \mathsf{D}_{eff}\nabla C_w]=0 &\qquad \text{in } \nabla [\theta \mathsf{D}_{\text{eff}}\nabla C_w]&=0 &\qquad \text{in } \Omega\\ C_w = g &\qquad \text{on } \Gamma_D C_w &= g &\qquad \text{on } \Gamma_D \subseteq\partial\Omega\\ \nabla C_w \cdot \textbf{n} = \textbf{j}_{\scriptscriptstyle \nabla C_w \cdot \textbf{n} &= \textbf{j}_{\scriptscriptstyle C_w}& \qquad \text{on } \Gamma_N =\partial\Omega \backslash \Gamma_D @f} It implemented with a finite volume scheme and is written so that could be run independently of the @ref RichardsModel model (e.g. with an stationary case), or fully coupled with a transient case with fluxes provided by the Dune::Dorie::RichardsSimulation class. It implemented with a finite volume scheme and is written so that could be run independently of the @ref RichardsModel model (e.g. with an stationary case), or fully coupled with a transient case with fluxes provided by the Dune::Dorie::RichardsSimulation class. @} **/
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!